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1. Introduction

This report addresses the aerodynamic forces and moments on spacecraft due to their motion through
a rarefied atmosphere. The impetus for this work arises from a desire to capitalize upon the features
of an existing Aerospace developed tool, ATRIUM, which performs detailed thermal analyses of
complex spacecraft configurations. The code utilizes randomly distributed ray tracings in conjunction
with a suite of geometric primitives to calculate surface temperature gradients due to sun illumination
and accounts for both multiple surface reflections and shadowing. In mathematical terms, ATRIUM
provides a method to perform surface integrals of incident rays over complex geometries and thus can
be exploited to calculate aerodynamic forces and torques for free-molecular flow.

On typical satellite configurations at altitudes below 370 kin, the aerodynamic torque frequently
dominates [1]' and can have a value in the neighborhood of 0.0136 Nm. Although the magnitude of
this torque is small by terrestrial standards (as are the other environmental disturbances), it has a
nonnegligible affect on spacecraft motion over an extended period of time. Accurate predictions of
the aerodynamic disturbances requires knowledge of the atmospheric density, surface relative
molecular velocity and surface reflection properties. Even at fixed altitude there will be variations in
the density due to Earth's diurnal cycle and solar activity. To correctly compute the surface relative
molecular velocity, it is not sufficient to know the inertial motion of the spacecraft; the motion of the
atmosphere is also required. Surface reflection properties are not well known for many materials and
experimental data indicate that they vary with surface temperature and contamination as well as angle
of attack of the incoming flow relative to the surface. In this study, we adopt a simple gas-surface
interaction model parameterized by two empirical coefficients [2]. There is a substantial literature on
this specific topic and a variety of models which have been tested against experimental data. It should
be noted that most density models of the upper atmosphere were developed by observing the orbital
decay of satellites and are based upon an assumed value of the drag coefficient. The drag coefficient
however is critically dependent on the nature of the gas-surface interaction. It is seen therefore, that
proper modeling of the gas-surface interaction is critical in obtaining accurate estimates of the
aerodynamic disturbances.

At altitudes above 120-150 km, the atmospheric density is sufficiently low that conventional
continuum assumptions are no longer valid. A dimensionless parameter, the Knudsen number, is used
to classify the flow regime along the spectrum from continuum to highly rarefied. The Knudsen
number, Kn, is defined by Kn=X/L where X is the average mean free path of the molecules (the

average distance traveled by a molecule before collision with another molecule) and L is a
characteristic length representative of the spacecraft. By convention, a flow with Kn < 0.01 is
regarded to be in the continuum regime where intermolecular collisions dominate. Flows with Kn >
10 are termed free-molecular where molecule-surface interactions govern the flow. Intermediate
values of Kn correspond to the transition regime where molecule-molecule and molecule-surface
interactions are of equal importance. Even for extremely low earth orbits, X is almost 1 km. and hence

the calculation of aerodynamic forces and torques upon the spacecraft must be based on free-
molecular flow theory. It is the transfer of momentum to the surface by atmospheric molecules which
determines the net force and torque. Momentum transfer occurs both when molecules arrive at the
surface and upon subsequent reflection. The free-molecular assumption allows us to treat these cases

numbers in brackets refer to the list of references



separately and add their effects. Momentum exchange due to molecules colliding with each other are
neglected and only molecule-surface interactions are important. In addition, geometrically
complicated surfaces can be easily treated by partitioning into simpler constituent surfaces except for
complications due to shadowing and multiple surface collisions.
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2. Nonrotating Bodies in Hyperthermal Free-molecular Flow

As mentioned in the Introduction, calculation of the aerodynamic force and moment on a spacecraft
requires knowledge of the velocity of the impinging atmospheric molecules relative to the surface. In
general, the spacecraft will be translating and rotating relative to the atmosphere and hence the
surface relative velocity of the approaching molecules will vary over the surface. In addition, even for
a purely translational motion, the molecules will have a distribution of velocities about a mean value
dependent on the atmospheric temperature. In the present section we will assume that the spacecraft
does not rotate relative to the atmosphere and we shall also neglect the random thermal motion of the
atmospheric molecules. The later assumption is frequently refereed to as the hyperthermal
approximation and is valid at sufficiently low temperatures when the random thermal motion of the
molecules is negligible compared to the speed of the spacecraft. These simplifying assumptions allow
us to treat the incoming molecules as a collimated beam impinging on an element of surface area with
a single characteristic velocity (care being taken to only include those portions of the surface exposed
to the oncoming flow). The effects of removing these assumptions will be addressed in subsequent
sections.

2.1 Gas-Surface Interaction

In order to calculate the forces exerted upon the surface by the impinging molecules, we must specify
the momentum exchange that occurs between the molecules and arresting surface. By convention,
two canonical forms of surface reflection are defined. Specular reflection (Fig. 2.1) is a deterministic
process in which the angle of incidence equals the angle of reflection while the incident velocity,
reflected velocity and surface normal are all coplanar. The speeds of the incident and reflected
molecules are not necessarily equal (some authors do however assume this equality in their
definition). In the case of diffuse reflection (Fig. 2.2), the incident molecules are trapped into the
interstices of the surface losing all knowledge of incoming direction and subsequently re-emitted
from the surface with a random distribution of speed and random direction governed by a "cosine
distribution" i.e. there are as many molecules with a particular speed leaving the surface in one
direction as leaving in the opposite direction. For both modes of reflection, the speed with which the
molecule leaves the surface is determined by the amount of energy it transfers to the surface before
being re-emitted. The degree of equilibrium attained between the molecule and surface is measured

by the energy accommodation coefficient a, defined by

E.-Er

Ea- EE,

Where Ej ,Er are the incident and reflected energy fluxes respectively and E" is the energy flux that
would be carried away by the reflected molecules if they were in thermal equilibrium with the

surface. Thus aa=O corresponds to no energy exchange between the incident molecules and the

surface while a,=1 characterizes the incident molecules coming into equilibrium with the surface

before being re-emitted.
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Figure 2.1. Specular Reflection. Figure 2.2. Diffuse Reflection.

We next introduce the momentum accommodation coefficients which relate the incident and reflected
momentum fluxes. It is found [2] that better agreement is attained between theoretical calculations
and experimental data if separate coefficients are assigned for normal and tangential momentum
exchange. Resolving the molecular momentum into components normal and tangential to the surface,
we define the respective momentum accommodation coefficients

o =PJ -Pr
On=

PA - PW (2.1)

a, "rT -'rT

where PiPr are the incident and reflected normal momentum flux and 'ri,T, are the incident and

reflected tangential momentum flux. The parameters p,,,'rw denote the normal and tangential
components of momentum flux which would be carried away from the surface by the diffusely
reflected molecules if they were in thermal equilibrium with the surface. Note that r,=O by the

definition of diffuse reflection. For completely diffuse reflection, a,=l regardless of the degree of

thermal accommodation while a,=l additionally requires complete thermal accommodation. For
complete specular reflection with no energy exchange between the molecules and the surface,
a,=GT=O.

In order to calculate p,, we must find an expression for the average normal velocity of diffusely
reflected molecules which are in thermal equilibrium with the surface. With reference to Fig. 2.2, the
molecules have become fully accommodated to the surface and leave with a random speed v
characteristic of the surface temperature and at random direction 0 (with respect to the surface

normal) governed by a cosine distribution. The kinetic theory of gases (see Appendix A) provides us
with the celebrated Maxwell-Boltzmann speed distribution for the molecules in equilibrium with the
surface. If we denote this speed distribution by O(v), then the probability that a molecule has speed in
the range (v,v+dv) and direction between 0 and O+dO is given by 0(v)cosOdvdO. The normal
component of velocity is vcos0, and hence the average normal velocity, V1, is given by

4



,r12

Vw= (vcosO)= f v0(v)cos'0dvdO
0 0

Performing the integration over 0 and expressing the mean speed in terms of the surface temperature

Tw [A.17, A.18] we obtain Vw = (7rkT1/21n)1
/
2 where k is the Boltzmann constant (1.38065 x 1-3

joule/molecule0 K) and m is the mass of a single gas molecule. Recalling that k = R/N 0 where 1? is
the universal gas constant (8314.5 joules/kg-mole*K) and No is Avogadro's number (6.02214 x 1026

molecules/kg-mole), we can express V, in the form

. R(2.2)

where Mt denotes the molecular weight. It sometimes proves convenient to express the above equation
in terms of the gas constant R, which unlike 9?, depends upon the particular gas of interest. In terms of
the universal gas constant, the equation of state of an ideal gas is pV = N9RT/No where p is the
pressure, V is the volume, and N denotes the total number of molecules. Comparing this with the
alternative form p = pRT where p is the gas density, we find that R=RM. Hence eq.(2.2) can be
expressed in the alternate form

V. = i-rR L /2 (2.3)

2.2 Aerodynamic Forces and Moments

Our first model is developed under the assumptions that 1) the body is not spinning relative to the
atmosphere and 2) the mean thermal motion of the atmosphere is negligible compared to the speed of
the body through the atmosphere; the so called hyperthermalflow assumption.

Figure 2.3 shows atmospheric molecules impinging upon the spacecraft surface S which is assumed
to be convex so as to avoid complications due to shadowing. The molecules all have velocity `V
relative to the surface so that the incident flow on an element of surface area dA can be viewed as a
collimated molecular beam of mass density p. Denote by "in a unit inward drawn normal to the

surface and let a be the angle between ii., and V7.

cosa - (2.4)

Where = /v It is important to note that no impingement occurs on those portions of the surface

where cosa < 0. Hence we will insert the factor H(cosa) (H denotes the Heaviside step function)
into the surface integrals below to effectively limit the aerodynamic pressure to those portions of the
surface which actually experience impingement. For an arbitrary surface S as shown in Fig. 2.3, there
is no natural set of basis vectors to resolve the shear stress on the element of area dA so we will
establish these vectors with respect to the direction i€ of the incident molecules.

5



Dn,

Figure 2.3. Spacecraft Surface in Free-Molecular Flow.

Decomposing • into a component normal to the surface and its orthogonal projection into the tangent
plane, we can write

v = cosa ii,, +sinai (2.5)

Which serves to define the unit tangent direction t. Forming the triple cross product ii,, x(ix iii.),

yields the following expression for t directly in terms of the unit vectors i' and ni.

X ii X iiin)_

The vectors {i, ,i" x iii } constitute an orthonormal triad on the surface.

In a time interval At the mass delivered to dA is contained in a parallelepiped of base area dA and

slant height VAt which constitutes a volume VAt cos a dA. Thus the mass flux 6Q is given by

8Q = pV cos a (2.6)

With the aid of eq.(2.5), the incident momentum flux V 5Q resolves into the components

Pi =Vcosa6Q (2.7)

ri = Vsina3(

Under steady state conditions the incident and reflected mass fluxes are equal; hence p,=V o5Q

6



where V, is given by eq.(2.3). The reflected momentum flux is given by the expression: -priin -+ -r,

Subtracting the reflected from the incident momentum flux yields the force per unit area, df/dA,
exerted by the molecules upon the surface.

d---f = (pi + p)fii, + (r'r--)t (2.8)dA

The two components of reflected momentum flux can be expressed in terms of the incident fluxes, Pw,
and momentum accommodation coefficients through eq.(2.1) By utilizing eqs.(2.6) & (2.7), we can
write eq.(2.8) in the form

dA = pV2 coscx{[(2- a, - CT,) cos a+caT L -~]fln +aUv} (2.9)

where we have eliminated t in terms of fii, and " through eq.(2.5). This form is simpler to integrate

since ý (unlike t) will not vary over the surface. Integrating over those portions of the surface which
are impinged by the atmospheric molecules, and assuming that the atmospheric density,
accommodation coefficients, and surface temperature are constant over the surface, we obtain the net
force f and moment g about point 0 (see Fig.2.3). All vectors are assumed to be resolved in a set of
body-fixed axes and indicated by bold face type.

f = WV1[QAp9 + ao(vj/v)T1 + (2 - a, - 1,)T2] (2.10)

g = pV2[arAPCP x € + a,,(vK/V), + (2 - a,, - cr,),] (2.11)

where the newly introduced terms are only dependent upon the surface geometry and angle between
the incident flow and surface normal.

AP= fH(cosa)cosadA APc,= H(cosa)cosardA

f=f H(cosa)cosan m dA T2 = H(cosa)cos2a nin dA (2.12)

S=fH(cosa)cosa rxni,, dA Q= H(cosa)cos2a rxnm dA

7



2.3 Closed Form Solutions
As a means of checking the implementation of the aerodynamic force and torque calculation, we
provide closed-form solutions for the following geometric shapes.

"• Sphere

"* Flat Plate

"* Right Circular Cylinder

"* Circular Cone Frustum

The force and moment components are plotted as functions of the angle of attack (except for the
sphere)

2.3.1 Sphere in Hyperthermal Free-molecular Flow

Figure 2.4 shows a sphere of radius a with a system of spherical coordinates {r,O,q} at its center.

Without loss of generality, we may assume that the incident molecular flow V is directed along the z
axis. The surface of the sphere is described by: r=a, 0:< 0: 1r, 0• (P < 27r with element of surface
area dA = a2 sin OdOdTp. The unit inward normal is given by

ni, = -sin 0coslp i - sin Osin T j- cosO k

where ij,k denote unit vectors along the axes of xy,z respectively. Recognizing that the factor
H(cosa) limits the integration to 7r/2 <0 < r, the surface integrals are readily computed and have
the values: Ap-_-na 2, TFj=2nra 2/3 k, fT2=ra2/2 k . Hence the net force on the sphere is a drag with
magnitude D given by

D= 7ra2PV2(2+a, -a,, + 4 a,-,o" (2.13)

It is clear from symmetry (and verified by calculation) that the aerodynamic torque about the center
of the sphere is zero.

V 
Y

Figure 2.4. Sphere in Free-Molecular Flow.
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2.3.2 Flat Plate in Hyperthermal Free-molecular Flow

Figure 2.5 shows a flat plate of area A at angle of attack P3 with respect to the incident molecular
velocity V. A rectangular coordinate system is established with origin at the centroid of the plate with
x,y axes respectively parallel and perpendicular to V. Here cosa = sin 03> 0 for angles of attack
between zero and 180 degrees. Since the surface is flat, the integrals are trivial to evaluate.

Ap=Asinfl, 9,=Asinfn in', T2=Asin P nit,

The resolution of the inner surface normal (with respect to the direction of incident flow) along the
drag (x) and lift (y) directions is given by nin = sin fli + cos P j. The net force on the plate then
assumes the form

f = pV2 A(Coi+CLj)
2

Where the lift and drag coefficients are given by

CL =[an L + (2 -an -at) sin P]sin 2f (2.14)

CD =2[at +•a, V-sin P + (2-U -a, a)sinE 2p Isinfl (2.15)

It is readily shown that the aerodynamic moment about the centroid of the plate is zero.

The lift and drag coefficients are plotted below as functions of the angle of attack for ar= a,=0.7 and
Vw/V=0.05. In general, the drag attains its maximum value at 3=n/2 being symmetric about this point
and vanishing when 13=0,ir while the lift is antisymmetrical about O=nt/2 vanishing at the points

03=0,nr/2,7r.

9
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ni.n
V

Figure 2.5. Flat Plate in Free-Molecular Flow.

Lift & Drag on Flat Plate
Hyperthermal Flow

an=at=0.7 Vw/V=0.05
3

CD

2

18 (deg.)
30 60 90 12 1 180

Figure 2.6. CL & CD for Flat Plate in Hyperthermal Free-Molecular Flow.
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2.3.3 Right Circular Cylinder in Hyperthermal Free-molecular Flow

V

Figure 2.7. Cylinder in Free-molecular Flow

Figure 2.7 shows a right circular cylinder of length l and base radius a at angle of attack 13 with
respect to the incident molecular velocity V. A rectangular coordinate system with origin at the
centroid 0 of the cylinder has its z axis along the axis of the cylinder and x axis in the plane
determined by V and the cylinder axis. It suffices to consider angles of attack in the range
0 <13• ir / 2. For purposes of computing the surface integrals, we partition the cylindrical surface
into its end bases S1,S2 and lateral surface S3.

- Force & Moment on Lateral Surface

In terms of the cylindrical coordinates (r,O, z) (x = rcos0, y = rsin 0), the surface S3 is described by
r = a,< 0 <27, -1/2 < z < 1/2 and the element of surface area is given by dA = a dO dz. Observing
that n,, = - cos 0 i - sin 0 j and , = sin3 i + cos/P k, we have cosa = - sin/3 cos 0; thus the region of
integration will be limited to 7r/2<• 0<53nr/2 for the specified range of angle of attack.
Straightforward integration yields the following expressions over the lateral surface.

Ap =2alsinf3 ApCp =-7r/2a 2lsinfli 13 =O

7=rc/2alsin/Pi = 4/3alsin2 fii •2=0

11



Resolving the force and moment along the {x,v,z} axes, we find the force f3 and moment g3 (about
point 0) on the lateral surface.

0,2=pV 7al{[.u +(8 ¢ -4 + 2 a,) sin P]sin Pi+a, sin2P k (2.16)

g3 = r1/4 pV2alc2r, sin2f3j (2.17)

Force & Moment on End Surfaces

The end face S 2 of the cylinder is not impinged upon by the flow over the specified range of angle of
attack. To calculate the force and torque on S1 , we apply the results obtained above for the flat plate
with A=Wza 2 (see eqs.(2.14) & (2.15)) Noting from Fig.2.7 that the angle of attack of S, with respect to

V is P3+i/2, and resolving the drag and lift forces along the coordinate directions {x,v.z), we find that

the force f, on SI is given by

f, =/7r2a'PV {asin2f3i+2cosI3[., +(2-u,)cosI3k (2.18)

The aerodynamic moment on SI about point 0 is: -1 / 2k x f, which can be shown to be equal to -g 3-

• Net Force & Moment on Cylinder

Adding the contributions from S, and S3 we find that the net forcef on the cylinder can be written in
the formf=f• i +f. k where

f,= lapV2 sinl3[4(4 +oa, - 2o,,)sin3 + 6,a- or, cos3 + 37ra" (2.196l (2.19)

f =alpV2 cosf [2a, sinfP+ 2r (2-o',,)cosP + ÷7rI V Or

The net moment about the centroid of the cylinder is zero at any angle of attack.

The two force components are plotted below as functions of the angle of attack for or,, = or, = 0.7
V,/V=0.05, and a/l=0.2.

12



Forces on Cylinder
Hyperthermal Flow

2.5 cn=at=0.7 Vw/V=O.05

2

1.5

1

S/PV2 al
0.5

/3 (deg.
15 30 45 60 75 90

Figure 2.8. Forces on Cylinder in Hyperthermal Free-molecular Flow.

2.3.4 Cone Frustum in Hyperthermal Free-molecular Flow

Figure 2.9 shows a cone frustum of circular cross section in a free-molecular flow where the incident
velocity V is at an angle of attack I0 with respect to its axis of symmetry. The end surfaces S1,S2 of the

body are circular disks of radii R1,R2 respectively and y denotes the half angle of the cone. We restrict

our attention to the range of angles 0 < y < 7r/2, 0• <13 < 7r/2. A rectangular coordinate system {x,y,z}
is introduced with origin at the apex of the cone and z axis coincident with the axis of symmetry.
Without loss of generality, we choose the x axis such that V lies in the x-z plane. In terms of
cylindrical coordinates { r,O,z}, the lateral surface S3 of the cone frustum is described by: 0•< 0•< 27r,

z' <•z < z 2 where zi = Ri coty (i = 1,2) and r(z) = tanyz. On S3, the position vector to an arbitrary
point is given by r=tanyzcos0i+tanyzsinOj +zk and the element of surface area is
dA = sin y/cos2 yzdzdO. From the figure, n,, =-cosycos0i-cosysin0j+sinyk on S3 and

v = sin /3 i + cos /3 k. Forming the inner product of these two vectors we find

cos a = cos/3 siny y- sin/3 cos y cos 0 (2.20)

To determine the portions of S3 that are impinged by the atmospheric molecules, we need to
determine the sign of cosca for 0<•O<•27r. Since cosoa vanishes when cos 0 =tan y /tan /3, we
consider separately the two cases: 1) 0• /3 < y and 2) y </3 < 7r/2.
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X

V

Figure 2.9. Cone frustum in Free-molecular Flow.

*Casel: 0<fP<y
It is clear from eq.(2.20) that in this case cosa > 0 for all values of 0, hence the entire lateral surface
of the cone intercepts the molecular flux. Performing the integrations indicated in eq.(2.12) we obtain

AP, = 7r(R - R )cosf3

2T= 2(R2 - R')(coty cosy sin/Pi + 2siny cosIPk)

•= Rý- R,2) Cos~. 2, ysin 2/3i+4(3+cos2P3-cos2y -3cos2/3cos2y)k2 1

A,,c,, = -coty(R2 - R,)(-sin 3i + 2cos/3k)
3

= =r (Rý'- R1 3)sin Pcoty cscy j

= 7 =(1 - R,~)sin 2P cot yj
3

The force f3 and moment g3 (about point 0) on the lateral surface follow from eqs. (2.10) & (2.11).

ft a, sin2P+a,,--cotycosysini0+ (2 - a,, )cos~ y sin2P i+

f[2a, cos 2
p3 + 2a,,l -sinycos/3+ (2.21)

V

-1 (2-o-r,, -)(3 + cos20- cos 2y - 3 cos 2y•cos 28)] k
4
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93= R'-RI') Fo,(-cra)oP oyi (2.22)

where f=- (2 -R

We note that in the limit as y -- 7r/2, the lateral surface degenerates into an annular disk and the
above expressions are in agreement with those obtained previously for a flat plate (see
eqs.(2.14),(2.15)) corresponding to the area A = 7r(R2 - R2).

* Case 2: y <j3 _< r/2

To establish the 0 limits of integration in this case, we have plotted in Figure 2.10 the function cosa

of eq.(2.20) for 0 over the interval (0,27r). We note that this function is negative at 0=-0, positive at

0=-r, and symmetric about the latter point. The root 0* of the function in the interval (0,7r) is given by

0* = cos-' (tan y /tan 1P) (2.23)

hence the integration limits in this case are 0* •_ 0•_ 27r -0"; z, < z < z2.

& r27r- 27r

Figure 2.10. Plot of cosa(0) for 3 > y.

We will have a continuous transition from Case 1 since 0 ---> 0 as /3y-' y+. Performing the
integrations indicated in eq.(2.12) we obtain

AP = (R2 - Rl)[(7r- 0*)cos/P + cotysin 0* sin3]

15



T= R-R J)cosy[(7r-0 -sinO' cosO*)cotysin p+2sin0 cosI3]i+
2(R 2 -Rý)(r-* i p+ cosy i 0" i ~

=8(1ý - R, )cosy [2 cos y(27r - 20 - sin 20")sin 2Pl + 8sin y' sin 0" cos2f +

2 cosycoty(9sinO + sin30")sin2Ip ]i +
3
1(R.; - Rf)cos 2y [4(7r- 0")sec2y cos 2fP +0"+ 3(0- 7r)cos2fP+

4 tan y sin 0* sin 2/ - sin 20" sin 2
pf - 7r] k

I(k,' - R;)[2sin0 cos p + cot'(;-0"- sin 0" cos0")sin P]i +

2 R- R;')cot y[(7r - )cos P + coty sinO sin 1]]k3•

= 3(R3 - R,)cot y csc y[(7t-0*- sin0*cos&*)sin13+ 2 tan y sin 0* cosI3}j
1G = ~ 3 _r]

-= 12'R3 - Rj1)[8sinO cos 23 - 2coty (20* +sin20*-2r)sin2I6+
12 (
3cot -y (9sin0* +sin30*)sin 2

p ]j

The force and moment (about point 0) exerted upon the surface S3 can now be calculated from
eqs.(2.10) & (2.11). As in case 1, the force lies in the x-z plane and the moment is directed along the y
axis.

Combining the results from the above two cases allows us to compute the aerodynamic force and
moment on the lateral surface of the cone frustum over the full range of angle of attack (0 < f < 7r/2)
as illustrated in the two plots below. The numerical results were generated for a cone half-angle of 60
deg.. a,,=cr,=0.7, and V,,/V=0.05. The force and moment were rendered dimensionless by dividing by
the respective scale factors 1/2,pV'7(R( - R?) and 1/3pV~ir(R• - R,"). To find the net force and
moment on the cone frustum, we simply add the contribution from the end surface S, which is a flat
plate of area 7rR• (see eqs. (2.14) & (2.15)).
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Lateral Surface Forces on Cone Frustum
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Hyperthermal Flow
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Figure 2.11. Forces on Cone Frustum in Hyperthermal Free-molecular Flow.

Lateral Surface Torque on Cone Frustum
1.4 Hyperthermal Flow

an=art=O.7 Vw/V=O.05 y=6 0 0
1.2
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0.4

0.2
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Figure 2.12. Torque on Cone Frustum in Hyperthermal Free-molecular Flow.
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3. Nonrotating Bodies in Free-molecular Flow

In the previous section, the model for predicting the aerodynamic disturbances on a body in a free-
molecular flow was based upon the assumption that the body was undergoing a pure translation
relative to the atmosphere and that the random thermal motion of the atmospheric gas molecules was
negligible in comparison with the speed of the body relative to the atmosphere. In this section we
develop expressions for the aerodynamic force and torque which include the effects of the random
thermal motion of the gas molecules (the body is still assumed not to rotate relative to the mean
motion of the atmosphere). As will be seen, the quadratures which are called for in calculating the net
force an torque are much more complicated that those derived previously under the hyperthermal
flow assumption.

3.1 Aerodynamics of a Body Translating in a Maxwellian Flow
If we consider a gas in equilibrium, then the number of molecules with random velocities between u
and u+du is given by [A.19]

3/2
Nr3/2,2RT1 exp- mN° u20 du du2du3

where N is the total number of molecules, m is the mass of a single gas molecule and Ta is the
atmospheric temperature. The constants R and No denote the universal gas constant and Avagadro's
number respectively. Dividing this expression by the gas volume and recognizing the product mNo as
the gas molecular weight N, we find that the number of molecules per unit volume with random
velocities between u and u+du can be expressed in the form

3 exp -T )du, du2du3  (3.1)• nV3i 31 2  V J

where p is the gas density and the parameter V, represents the most probable speed [A.16].

_ 2RTV (3.2)

The random velocity u appearing above is with respect to the mean motion of the gas. Denoting by V
the mean velocity of the gas, and resolving along the unit triad {nioIt'nin xt} at the element of
surface area dA (see Fig. 3.1), we can write

V = V(cos a nin + sin a t).

It follows that the velocity v of the molecules with respect to the surface is given by v = V + u.
Writing v = v1 ni + v 2t + v3 ni, x t, we can express the square of the random speed in the form

u2 =(v-V).(v-V)= v2 + V2 - 2V(v cosa +v 2 sina)

Hence the number of molecules per unit volume whose surface relative velocity lie between v and
v+dv is given byf(v1 ,v2,v3) dvjdv2 dv3 where

18



nlin

Figure 3.1. Unit Triad on Surface

v, pexp(-S2) exp $TexpL(v cosa + v2 sin a)] (3.3)

and S denotes the molecular speed ratio

S = -- (3.4)

Our first model, based upon the hyperthermal flow assumption, corresponds to S = (in the sense
that V,,=0).

Consider a stream of molecules with velocities in the range (v,v+dv) incident upon the element of
surface area dA. In a short time interval At, these molecules sweep out a volume dA v, At. Thus

f(v)dvldv2 dv 3 dA v, Atm is the mass delivered to dA in time At from molecules with surface relative

velocity in the range (v,v+dv). The net mass flux 6Q from all incident molecules is given by

(5Q = in f f(V, V_, V3 )vl dvldv2 dv 3

0

Note the integration limits on v,; a molecule with v, < 0 is traveling away from the surface. Utilizing
eq.(3.3) and performing the integration, we obtain

SQ = pV j, (Scosca) (3.5)
where

F1 (x) = W - [exp(-x2) + -v/-x(1 + erfx)] (3.6)

The incident momentum flux due to molecules with surface relative velocities in the range (v,v+dv),
is given by
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mnf(v)v, (vnj,, + v2 t + v Xt)dvdv2 dv3

Integrating over the region {0-< v, < oo,- o < v 2 < oo,-eo < v 3 < o} and noting that f(v) is an even
function of v3 (so that the last component integrates to zero) we arrive at the following expressions for
the components of the incident momentum flux along the normal and tangential directions to the
element of surface area.

p, = pV42 r2(scos c,) (3.7)

i = pV,7Ssinar,(Scosa)

where r( W [xexp(-x2 ) ++ 2x 2 )(I + erfx)] (3.8)

The functions F['(x) and F2(x)are plotted below in Figure 3.2

Under steady state conditions, the incident and reflected mass fluxes are equal; hence pw=Vw 6Q

where Vw and 8Q are given by eqs.(2.2) & (3.5) respectively. The force per unit area is given by

eq.(2.8), where again, the two components of reflected momentum flux can be expressed in terms of
the incident fluxes, p,, and momentum accommodation coefficients through eq.(2.1). Utilizing
eqs.(3.5) & (3.7) we finally arrive at the result

df= V,2( 2 -_,,)(Scosa)_(,Scosor,(Scoso)+o, ,,.F(Scosa) 1 n,+

dA P(- J + (3.9)

pv 2asr,(scosa)9

where we have eliminated t in terms of iin and i' through eq.(2.5) (recall that WIND V/l VI)

6 r

4

2

S~x
-0.5 0.5 1 1.5 2 2.5 3

Figure 3.2. Universal Functions 1, and 12.
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In contrast to the hyperthermal case treated earlier, all portions of the (convex) surface experience
impingement due to the random motion of the molecules; hence we do not restrict the integration to
those portions of the surface where cosa > 0. As would be expected, the molecular flux is maximum

at cx=O and minimum at x=•T (see eq.(3.5) and Fig. 3.2). Integrating eq.(3.9) over the entire surface

and assuming that the atmospheric density, accommodation coefficients, and surface temperature are
constant, we obtain the net forcef in the form

pV2_F + 2-or cr T4j

fF s+2' (3.10)

where

F, ffF (Scosa)dA T,= 1f E(Scosa)n,,,dA (3.11)

T,=fF,(Scosa)cosanj,,dA 44=ý7F,(Scosa)nj,,dA

Similarly the aerodynamic moment g about point 0 (see Fig. 2.3) assumes the form

g- = I2 -02 -•- 013 + -q- (3.12)

where

-=q 4F,(Scosa)rdA f2=f fl 2 (Scos a) r x ni dA (3.13)

!=Q, r,(Scosa)cosarxn,,,dA !4=Jff (Scosa)rxn,,dA

In performing the surface integrals, recall that cx is the angle between the surface unit inner normal nin

and mean flow velocity V.

As remarked above, the hyperthermal flow assumption (which neglects the random motion of the
atmospheric molecules) corresponds to an infinite value of the molecular speed ratio S. Recalling the
limiting values of the error function: lim erf(x) = +1, it is easy to show that

X-.-•+_

lim[1 + erf(Scos a)] = 2H(cosa)

lim 1F(Scos a) _ cos a H(cos a) (3.14)
$-")• S

From eqs.(3.6) & (3.8) it can be shown that

W(x)= W+I(x) I + erfx)
4

and hence

Hi r2 (S cos a) - cos 2-alH(cosa) (3.15)lim- s2

Armed with these results, it is readily demonstrated that in the limit of infinite S, eqs.(3.10) & (3.12)
do indeed recover the hyperthermal results given by eqs.(2.10) &. (2.11).

21



3.2 Closed Form Solutions
Although the integrations are rather involved, we can obtain closed form solutions for the
aerodynamic forces and torques for finite molecular speed ratio in the case of simple geometries.
Below we present results for the a) Sphere, b) Flat Plate & c) Right Circular Cylinder. The force and
moment components are plotted against angle of attack (except for the sphere) for selected values of
the molecular speed ratio and are compared with the hyperthermal results. We demonstrate
numerically, and prove analytically, that the resulting force and moment expressions reduce to the
previously obtained hyperthermal results as the molecular speed ratio tends to infinity.

3.2.1 Sphere in Free-molecular Flow
Figure 2.4 shows a sphere of radius a with a system of spherical coordinates {r,0,qp} at its center.
Without loss of generality, we may assume that the incident mean molecular flow V is parallel to the
z axis. The surface of the sphere is described by: r=a, 0 < 0 < Ir, 0• <p -< 27r with element of surface
area dA = a2 sinOdO dT. The unit inward normal is given by

n1 ,, =-sin0cosi-sin0sinqpj-cos0k

where i~j,k denote unit vectors along the axes of x,y,z respectively.

To evaluate the force associated surface integrals appearing in eq.(3.11) we make the substitution
x = -Scos0. The integration over (p is immediate and we find

F, /Sfr, (x)d

h= 2n=' 2/S3 fX2rF x)dx k-S2

T,= 7a2/S2 fS2() k

Utilizing integration by parts, we can perform the integration over x.

-S

S 42
x',(x)dx = S'

s3 (3.16)

sfj(x)dx =l ( +4S4)erf(S)+ -8j(2S2 - 1)Se-s-

SxF. (x) dx = 1( 4S4 +4S 2 - 1)erf(S)+ ---= (2s2 + l)Se-"
S 1

Combining the above results we find that the net force on the sphere is a drag with magnitude
pV2ira2 CD/2 where the drag coefficient is given by

C_ 2-a,,+a,, 4S4 +4S 2- 1 eff(S)+ 2S 2 +1 e-s? + 4,a"- (3.17)
D 2S2 2S
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Taking the limit of this expression as S - 00, we recover the hyperthermal result in eq.(2.13).

The drag coefficient is plotted below as a function of S with cy,,=cY,=0.7 and V,,/V=0.05. Since the drag

coefficient decreases with S, we conclude that the drag force is underestimated by the hyperthermal
assumption.

CD Drag Coefficinet on Sphere
2.7 Free-Molecular Flow

2.6 7n=0.7 crt=0. 7 Vw/V=O.05

2.5

2.4

2.3

2.2

S
2.10

3 4 5 6 7 8 9 10

Figure 3.3 CD for Sphere as a Function of S.

It is clear from symmetry (and verified by calculation) that the aerodynamic torque about the center
of the sphere is zero.
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3.2.2 Flat Plate in Free-molecular Flow

Figure 2.5 shows a flat plate of area A at angle of attack 13 with respect to the incident mean molecular
velocity V. A rectangular coordinate system is established with origin at the centroid of the plate with
x.y axes respectively parallel and perpendicular to V. In contrast to the prior hyperthermal analysis,
the random motion of the molecules will result in impingement upon the back surface of the plate and
hence we must now also integrate over that surface. Denote by S' and S- the front and back surfaces
(relative to V) of the plate respectively. The angle x assumes constant values over the two surfaces,

so the surface integrals are trivial to evaluate.

Oil S'. cosa=sin/3 and the unit inward normal is given by n=sinfii+cos/j. Denoting the
contribution to the force (eq.) (3.10) by r, we find

f+-= pV A cr, e(Ssin I3)i + 2- --- F2(Ssin f3)n- ar,F,(Ssin fP)sin P n+ a,, -•-l-'(Ssin,)n

On S-, cosa = -sin /3 and the unit inward normal is (-n). The corresponding force contribution f is
given by

f_: pAaIrrF,(-Ssinl)i 2-r, r(-Ssin/3)n-a,r,(-Ssin/3)sin/3 n-a,.I, V"(-Ssin/3)n]
s I '~~ s - v

The following relations can be immediately verified and will prove useful in simplifying the
expression for the net force on the plate (see eqs.(3.6) &(3.8).

r, ( + r, (-X) I _ x.,= -r.e"+xerf(x)

rý,(W)-r(-X) xe_ + (1+ 2x2)erf(x)
4W 2

Adding the two force components r and f and introducing the expression for the unit normal vector
n, we obtain the net force f on the plate in the form

f =IpV2A(C i+CLj)
2

where the lift and drag coefficients are given by

CL = [2- a,, - a, exp(-S 2 sin 2 /3) + a,, -1]sin 2/3 +
L Firs V (3.18)

2-c" +2(2-ra,, -cr,)sin 2/3 ]cos/3erf(Ssin/3)
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CD= 2 (7,, flsin 3 + -2 [(2-,r )sin 2
p3 + -, cos 213 ]exp(_S2 sin213) +

2[(2 - o,, sin2fl + 'I-SJ + ar, cos2I3 ]sin P3 erf (S sin P3)

Taking the limit of the above expression as S -- oo, we recover the hyperthermal results of eqs.(2.14)
& (2.15).

It is readily shown that the aerodynamic moment about the centroid of the plate is zero.

The lift and drag coefficients are plotted below as functions of the angle of attack for Y,=u,=0.7 and
V,/V=0.05. The solid curves correspond to S=3 while the dashed curves are the corresponding
hyperthermal results. As in the hyperthermal case, the lift is antisymmetric about f3=7t/2 vanishing at

P3=0,t/2 and it. Note however that the angle of attack corresponding to maximum lift is affected by
the molecular speed ratio. The drag remains symmetric about the point 13=rn/2 at which it is

maximum; however it assumes a nonzero value at r3=O,nt for finite S and or, • 0. We deduce from the
plots that the magnitude of the aerodynamic force is underestimated by invoking the hyperthermal
assumption.

Flat Plate - Lift Coefficient
0.8 Free-Molecular Flow

0.6 un=0.7 Ot=0. 7 Vw/V=.05

0.4 ---- S=0__3

0.2

/3 (deg.)30 60 9 120 150 / -80
S,/

-0.2

-0.4

-0.6

Figure 3.4. CL for Flat Plate in Free-molecular Flow.
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Flat Plate - Drag Coefficient
Free-Molecular Flow
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Figure 3.5. CD for Flat Plate in Free-molecular Flow.

3.2.3 Right Circular Cylinder in Free-molecular Flow

We now calculate the aerodynamic force and torque on the cylinder shown in Figure 2.7 neglecting
the effects of the two ends (these faces are simple flat plates which have been treated previously). The
cylinder has length I and radius a while its axis is at an angle D with respect to the incident mean
molecular velocity V. As in the earlier hyperthermal analysis, it suffices to consider 0•< fl, <r/2. A
rectangular coordinate system with origin at the centroid 0 of the cylinder has its z axis along the axis
of the cylinder and x axis in the plane determined by V and the cylinder axis. In terms of the
cylindrical coordinates (r,O~z) , the lateral surface is described by r = a, 0•< 0:< 27r, -1/2:5 z <1/2
and the element of surface area is given by dA=adOdz. Observing that
n1 , =-cos0i-sin0j and ir=sin/3i+cospfk, we have cosa=-sinf3cosO.

It follows from eq.(3.11) that

5F,=2alfF1 (yLcosO)dO (y.-SsinI3)
0

Making the substitution x =p, cos 6, and introducing eq.(3.6) we obtain

2al 1e-x' +.17xerf(x) dx

Performing the integrations, we obtain

T = Viral e-A12 [(1 + lu2 )l (,u2 /2) + I211 (i2 /2)] (3.20)

where I4( ) denotes the modified Bessel function of the first kind of order V.
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In a similar fashion (introducing eq.(3.8)),it can be shown that

_2aif2 (y cos0)cos0dOi 2al fx e - +Vr-/2(x+2x3)erfxdxi

Performing the integrations, we find

9u=--ai 2e k12 +3)10(U2/2)+(2y2+2 1,(y' /2)]i (3.21)
"3

Likewise,

J=2alyl/SJFI(/jcosO)cos 2OdOi = 2al 2 x2  ( e- -+ x erfxbxi0 YSl•- 0 xer x d 7i

Performing the integrations, we obtain

T, = Vir al !j/S e-"/2[(3 + 4 )1o(Y2/2)(+ A2 -1)1, (y2/2)]i (3.22)
"6

Finally,
2al x2

T=2alfT 1 (ycosO)cosOdOi =-f x dxi-= al i (3.23)
0 Y0  p2 -X 2  2

Inserting the expressions from eqs.(3.20)-(3.23) into eq.(3.10) yields the aerodynamic force on the
lateral surface with componentsf, andf given by

f,=PV al{o,,-sin -- +(2Q, - ,,-4) e--I sin 2 pf [(2 y2 + 3)I1(/.12 /2)+(2 y2 + 1)I,('U2/2)]

2 V 6 Y

f = 7rpV2 al a, y-' sin P cos P e-'/2[(1 + !.2)Io(12/2)+ 1121i(112/2)] (3.24)

Recalling that y1 = Ssin /3, we should recover the hyperthermal result derived earlier by taking the
limit of the above expressions as 11 -jo. Utilizing the asymptotic expansions for the Modified
Bessel functions

eA

we find

(2112 + 3)1o(p2/2) + (2112 + 1)i, (112/2) 4
lim

li (: + 1)I0(1e2/2)+ 1( _
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Thus the limiting value of the forces in eq.(3.24) as S -4 - do indeed degenerate to those given in
eq. (2.16).

The axial and transverse forces (ftf .,) on the lateral surface of the cylinder are plotted in Fig. 3.6 as a
function of the angle of attack (for ca,=cr,=0.7 and V,/V=0.05) with the solid curves corresponding to

eq.(3.24) with S=3 and the dashed curves indicating the corresponding hyperthermal result as given
by eq.(2.16). In both cases, f, vanishes at 3 = 0 and attains its maximum value at P3 = r/2. We note
however that at /3 = 0, f. is non zero for a finite speed ratio (cr, • 0) while it is zero in the

hyperthermal limit. A similar result was observed in the previous case of the flat plate. Again, the
plots show that the magnitudes of the aerodynamic forces are underestimated by invoking the
hyperthermal assumption.

Forces on Cylinder
Free-Molecular Flow

2.5 an=0. 7 crt=0.7 Vw/V=.05

1.5

s S=3

0.5 f a

13 (deg.)
15 30 45 60 75 90

Figure 3.6. Forces on Lateral Surface of Cylinder in Free-molecular Flow

To calculate the aerodynamic torque, we need to evaluate the four integrals in eq.(3.13). It is readily
shown that the integrals g2,g3 and 94 all vanish. The remaining integral is simply related to the above
value of 9 4.

• = -aJ = -- a 2 lpi (3.25)
2

The aerodynamic moment about the centroid of the cylinder then follows from eq.(3.12)

g = 7 a2lpV2U, sin 2/3 j (3.26)
4

Interestingly, the moment unlike the force, is independent of the molecular speed ratio and of course
agrees with the hyperthermal result given in eq.(2.17).
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4. Rotating Axisymmetric Bodies in Hyperthermal Free-molecular Flow

So far in our investigation, the bodies under consideration were not rotating with respect to the
oncoming (mean) flow and hence the surface relative velocity of the incident molecules did not vary
over the impinged surface area. We now consider the general class of axisymmetric convex bodies
which are rotating about their axis of symmetry but have arbitrary orientation relative to the incident
molecular flux. In order not to obfuscate the effects of rotation, we restrict our attention to the case of
a hyperthermal free-molecular flow; this assumption is removed in the subsequent section. General
expressions in terms of definite integrals are obtained for the aerodynamic force and moment resolved
along a set of space fixed axes. The quadratures are carried through explicitly for some simple
geometries and force and moment components which arise from the body's rotation are plotted
against the incident angle of attack.

4.1 Surface Geometry
Figure 4.1 shows a body rotating about its axis of symmetry at rate (o relative to the atmosphere. We
define a spatially-fixed coordinate system {x.y,z} with corresponding unit vectors i, j, and k taking
the z axis along the axis of symmetry. The incident molecules have velocity V0 relative to the origin
O where V0 is at an angle P3 with respect to the -z axis and is taken (without loss of generality) to lie in
the y-z plane. At the element of surface area dA instantaneously at point r, we construct a body fixed
frame with unit vectors{t,ii,b} along the local tangent, normal and binormal directions i.e. t is along
owxr, n points in the direction of the inner normal to the surface, and b = t x n. It proves convenient
to introduce cylindrical coordinates {;, (p, zj related to the rectangular coordinates by

x= 5sinqp, y=-Ticosqp (4.1)

Note that since the flow is symmetric with respect to the y-z plane, this choice of p will render many

expressions to be even functions of qp thus simplifying the integration. Since the z axis is an axis of
symmetry, 5I will be a prescribed function of z on the surface. The position vector r to a point on the
surface is given by the expression

r(z, q() sin (pi -; cos (p j + zk (4.2)

The unit vectors t and b are along the directions of ar/la9 and ar/az respectively, while n = b x t. If
we define 0 as the angle between the outer normal to the surface and the z axis, we can write

t = cosoi +sin(oj

b = -cos0 sin (pi + cos0 cos T j + sin 0k (4.3)

ii = -sin (osin 0i + cos eo sin 0j - cosOk
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Figure 4.1. Axisymmetric Body in Free-molecular Flow

Thus the transformation matrix T from the {n.b,t) to the {i~j.k} basis can be expressed as

(-sin0sinqp -cos0sinqp cos(pO
T= sin 0cosc cos 0cosq(p sin, ( (4.4)

-coso sine 0 0)

The element of surface area is given by dA = lalrq x zar az l which can be expressed in the

form
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dA = j csc 0 dqp dz (4.5)

The velocity V of the incident molecules relative to the surface is given by

V=V0 - wxr

In contrast to the non-rotating case, the surface relative velocity now varies over the surface.
Expressed in the surface-fixed triad, we obtain

V = V0(cos/3cosO + sin3 cos 0sin O)n + V0 (sin/3 cosOcos•p - cos/3 sinO)b (4.6)

+ (V0 sin P sin T - p5o))t

To a high degree of approximation, we can replace o with the body's inertial angular velocity. As

discussed in Sec. 2.2, it is important to limit the aerodynamic pressure to those portions of the surface

which actually are impinged by the atmospheric molecuules. This requirement may be expressed by

the inequality V-n> 0. To effect this limitation, we will insert the factor H(rl) into the surface

integrals of the aerodynamic forces and torques to be derived below where

r/= cos/3 cos 0 + cos (p sin/3 sin 0 (4.7)

4.2 Aerodynamic Forces & Moments

As shown in Sec. 2.2, the incident flow has an associated mass flux of pV-n and momentum flux of

p(V -n )V. Denoting by P,;,PbiP,i the components of the incident momentum flux along the local

normal, binormal and tangent directions, we obtain

p,, = PV0
2 ?72

Phi = PVoij(cosOcos(psin /3-cos /3 sin 0) (4.8)

p, = p V0 r/(V0 sin (p sinP3-;co)

In addition to the above incident momentum flux, we require an expression for p,, - the normal
component of momentum flux which would be carried away from the surface by diffusely reflected
molecules in thermal equilibrium with the surface. Utilizing the above expression for the mass flux,
we obtain

p ,. = oVoT/VK (4.9)

where V, is given by eq.(2.3). From the definitions of the momentum accommodation coefficients
(eq.(2.1)), we can calculate the reflected momentum flux in terms of the incident momentum flux,

p,, a.- and a,. Subtracting the reflected from the incident momentum flux yields the force per unit

area, P. exerted by the molecules upon the surface.

P,, , P,(4.10)

where P,, = (2 - a,,)p,,, + a,, p,, P1, p,,, P, p,
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With the aid of eq.(4.3). we can now calculate the net force F on the body resolved along the axes of
the fixed {x.y,z} coordinate system.

F., = f [P, cosTo- P,, sin0sin T - PI, cosOsin(p]H(?7)dA

F,. = f[P, sinq + P,, sin0coso + PF, cosOcosp] H(77)dA (4.11)
F = [[P,, sint0 - P,, cosO]H(77)dA

In a similar fashion, the aerodynamic moment M about the {x,y,z} origin can be calculated with the
aid of eqs.(4.2), (4.3)& (4.10)

M, =f[cos(p(;cosO-zsinO)P, - cos(p(zcos0 + ,•sin O)P/, - zsin T P,]H(1l)dA
M, = [(pcosO-zsinO)sin T,, -(zcosO+;sinO)sin (pP, + zcos(o P,]H(7/)dA (4.12)

Mc = ;5 P, H(i7)dA

The force and moment expressions given above are in a form suitable for numerical implementation.

We now proceed to expand the above force and moment expressions so as to reveal in an explicit
manner the effects of body rotation upon these aerodynamic disturbances. Due to symmetry, many
simplifications will occur in the process of generating the final formulas thus allowing for closed
form solutions to several geometric primitives.

Combining eqs.(4.8)-(4.10) we obtain

P, =(2 - a,,)PVo2fl' +uPV0V,,
P, = a,pVo47](cosOcos•psin ,6 - cos f]sin 0) (4.13)
P, = c,pv0 (v0 sin T sin P -5)

We make the following observations

1);5 and 0 are independent of (p
2) r1 is an even function of (p
3) P,, and Ph are even functions of (p
4) P, is the sum of an even and odd function of qp

The region of integration is described by: {-n < (P < 7r; z1 < z < Z2 }and the element of surface area is
given by eq.(4.5). In light of the above observations, we can express the force components in the form
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z2,/

FUz -2;,,pV0oJ f;•2 csc 0 cos T,17 H(,7) do dz
7., 0

•,=2pV- f f [sin 0 cos ((2 - ,, + a,, V,/ V,) +
0

Uf, Cos 0 Cos T (sin 3 os 0 os (p - os 3sin 0) + a, sin/3 sin2o (4.14)

77 H(it)j csc 0 dT dz

2, 7r

o= 2pVff.[a ,sin0(sinP3cos T os0-cos/3sinO)-cos0((2-u,,)7+ao, V,,.V,)]
Z, 0

77 H(in) 5 csc 0 dl dz

In a similar fashion, the components of the moment can be reduced to

M., = 2pVo f f [cosT (;5 cos 0 - zsinO)((2-crr + ) r,, V,,,/Vo )-
0

a-, cos ( (z cos 0 + i sin 0) (cos 0 cos T sin 3-cos 3 sin 0) -
a,z sin P sin q2 ]71 H(i7)) csc 0 dp dz

(4.15)

MY = -2a, pvjo f f z;2 cosTo71 H(,7)csc 0 T dz
Z: 0

M = -2a,pvoo' f f n 5z H(l)csc 0 dT dz
Z, 0

We observe that the body's rotation has no affect on F,,, F, and M, but introduces additional
disturbances Fý, M:, and M_ proportional to the body's angular rate. It is interesting to note that the lift
force, F,, acts in opposite direction to that which would obtain under a continuum flow (Magnus
effect) i.e. we can show that the lift force corresponding to a free-molecular flow acts in the direction
of ox V0. Taking co > 0, we will thus show that F• < 0. Based upon eq.(4.14), we must prove that

Z, Ir

f;52 csc Of cos T07) H(i7)dq) dz _ 0
21 0

Since 0,13E(0,ir), sinf3>0 and sin0>0. It is therefore sufficient to demonstrate that the inner
integral is nonnegative. From eq.(4.7), we can write i)=acosT0+c; a=sinf3sin0>0, and
c = cos /3 cos 0. It is easy to show that

1" ;/2

fcos (p H(fl)d(P = f [(acos T + c) H(acos T + c)-(-acosT + c) H(-acos(o + c)]cosq dqT
0 0

For 0!< :0 7r/2, a cos (0 + c > -a cos T + c; and of course H( ) is a monotonically increasing function

of its argument. It follows that f cos T 71 H(71) dp > 0 (QED)
0

33



4.3 Closed Form Solutions

We provide below closed form expressions for the aerodynamic forces and moments on a circular
disk, sphere. right circular cylinder and right circular cone where each body rotates about its axis of
symmetry. Since results for the non-rotating case have been provided in Sec. 2.3, we shall only
consider disturbances arising from body rotation.

4.3.1 Spinning Disk in Hyperthermal Free-molecular Flow

Consider the disk x2 + y2 < R2 lying in the plane z=O. Restricting the angle of attack to 0• /3 < r7/2,
we have impingement only on the top surface (0 = 0)where 77 = cosfP (see eq.(4.7)). The element of
surface area is given by dA = dd-dpdqp. Due to the degenerate nature of this surface, we need to
modify the form of the integrals given in eqs.(4.14) &. (4.15). The region of integration will be
{0•< ,5 < R; 0 < •o < 27r} (recall that advantage was taken of symmetry in eqs. (4.14)&;(4.15) thus the

factor of 2 and integration over 0• (p < iw).

2jr R

=-u'p14(O Cos3 P f f; 2 cos'pdp-d'p = 0
0 0

2;r R

Mz(oi) = -U,pVO) cosI3 J Jf Tid;5dq u ,pV'ýR 4 0)COS.3
2

0 0

Thus rotation has no affect upon the force and produces a torque opposing the direction of spin.

4.3.2 Spinning Sphere in Hyperthermal Free-molecular Flow
Figure 4.2 shows a sphere of radius R rotating about the z axis with angular rate 0w. The
hemispherical portion of the sphere impinged by the oncoming flow (incident at angle 13 with respect

to the z axis) is not conveniently described by the set of cylindrical coordinates {f,T,,z} defined in
Figure 4.1. We therefore transform to a new rectangular coordinate system {X, Y, Z} by rotating about
the x axis by angle 13. A set of spherical coordinates {R,O,,Olat the center of the sphere is defined by

the transformations

X= RsinEsinD, Y=-RsinOcoscF, Z= RcosE (4.16)

The element of surface area is given by dA = R2 sin GdOd' and the region of integration (impinged
portion of surface) is conveniently described by {-Hr < 0 < 7r; 0 < 9 < re/2}. In order to apply the

general formulas given by eqs.(4.14)&(4.15), we need to relate the cylindrical coordinates {,'Tp,z} to
the spherical coordinates {R,O,44j. The transformation between the two sets of rectangular
coordinates is given by

(x,V,z)=(X,cosf3Y-sinflZ, sinf3Y+cos/JZ)
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Figure 4.2. Rotating Sphere in Free-molecular Flow

Introducing eqs.(4.1) & (4.16) into the above, we obtain the relations

5 sin q = R sin E sin 0

pcosq9 = R(sin lcosG + cosfPsinOcos () (4.17)

z = R(cos jcos E - sin P sin O cosD)

Recalling the definition of 0, we see that for the present case of the sphere, cosO = z/R and
sin0 = j/R. Utilizing these results in eq.(4.7), we obtain, as expected,,q = cosO. The flow being
symmetric with respect to the y-z plane implies that all integrands in eqs.(4.14) & (4.15) are even
functions of (D. Performing the integrations, we obtain.

- •(_) = 'tgoR3a o sin/3
3

M" (o) = -- r ,pVoR 4 0_ sin 2P (4.18)
8

M (o) = --u pV0 R4w (5- cos 23)
8

The two torque components (scaled by rcrpVoR 4 0 / 8) are plotted below as functions of the angle of
attack. Note that the rotation of the sphere results in a torque opposing the spin direction over the
entire range of angle of attack.
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Figure 4.3. Spin Moments on Sphere in Hyperthermal Free-molecular Flow

4.3.3 Spinning Cylinder in Hyperthermal Free-molecular Flow

With reference to Fig. 4.1. a right circular cylinder of radius R and length L has its centroid at the
origin of the Cartesian coordinate system {x,y, z}. The cylinder is rotating about its axis (z) at angular

rate o) with an impinging free-molecular flow incident at angle of attack P3. On the lateral surface of

the cylinder, 0 = ir/2, 17 = sin f3cosq( and for 0 < /3 < r, q7> 0 if Jqpj < nj/2. It follows from eqs.(4.14)
& (4.15) that the spin induces a force on this portion of the surface given by

F' -7 o)r, pVo R2 Lsinfi2

and a moment about the center of the cylinder

M, =0

M' = -2oapV0 R3 Lsin

If we restrict 0: /3 < 7r/2, then there will be no impingement on the bottom surface (z = - L/2)of the
cylinder. The force and moment on the top portion of the cylinder follow from the analysis above of
the spinning disk. Thus the net force and moment on the cylinder due to its rotation are given by
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=,(o) .--- oa,pVoR2 LsinI3
2

M, (CO) = 0 (4.19)

M4(CO) = -loatpVoR3 (irR cos f + 4Lsin P3)
2

The z component of the moment (scaled by -coopVoR 3/2) is plotted below as a function of the
angle of attack for i) R=I,L=5 and ii) R=5,L=I.

-Mz Torque on Rotating Cylinder
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Figure 4.4. Spin Moments on Cylinder in Hyperthermal Free-molecular Flow

4.3.4 Spinning Cone in Hyperthermal Free-molecular Flow

Figure 4.5 shows a right circular cone of base radius R and height L with the origin of the Cartesian
coordinate system {x,y,z} at the center of its base. The cone is rotating about its axis (z) at angular

rate (o with an incident free molecular flow V0 at angle of attack P3. We restrict 0 to the range (0,7r/2)

so that there will be no impingement on the base of the cone. The angle 0 between the outer normal to

the surface and the z axis is given by 0=7r/2-y where y is the half-angle of the cone i.e.

tany=R/L. The cylindrical coordinate Ti is given by ;=(L-z)tany, and from eq.(4.7),
?7=cosflsiny +sin fcosycos(p. To determine when 71 is positive, it proves convenient to consider
the two cases 1) 0O< fP < y and 2) y < 13 _7r/2.
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Figure 4.5. Rotating Cone in Free-molecular Flow

-Casel1. 0:50<y

Here we will have sini< sin y and cosP8> cos y so that cos,8sin y > cosy sin >O0and hence 77>O0
for all (p. Pei-forming the integration in eqs.(4.14) & (4.15) we obtain

F$(o) = a-,pV0 ,R' cot y wosin f
3

Mlý (0))-R cotyF, (o)) (4.20)
4

Mz.(w) -- a~pV0 R'(cosfi

*Case2. y</3•7r/2

In this case, cosfi <cosy and siny <sinf3 therefore 77 is positive at (p=O and negative at (p=7r. It
can be shown that ?7(qo) has a single root on [0, 7r] at p=&where

&0 = cos-{ tan y
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Hence the integration limits are now {0•< z• L;0:5 <q)p <p)*. Since lim ()* = r, we will have a

continuous transition across the point [3-y. Performing the integration in eqs. (4.14)&(4.15) we obtain

1,(o) =- 1wapVoR3o(q) sin3 coty +coslpsin&p*)

M,(0)) = -coty F,(c) (4.21)
4

M,(CO) =-lc, pVoR4 co(W cos P + coty sin 3 sin q*)

Fig. 4.6 is a plot of the spin induced force Fj(ow) (scaled by -otpV0oR3(o/3) as a function of the
angle of attack for a cone with half-angle of 30'. It is interesting to note that the magnitude of this
force starts out as an increasing function of the angle of attack (P3) but does not assume its maximum
value at /3 = 90g.

The spin induced torques My(o) and M.(wo) (scaled by -u,pV0 R4 o) are shown in Fig. 4.7 as

functions of the angle of attack on the 300 cone. We note that the magnitude of M, is significantly
larger than that of MY.
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Figure 4.6. Spin Force on Cone in Hyperthermal Free-molecular Flow
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Figure 4.7. Spin Moments on Cone in Hyperthermal Free-molecular Flow
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5. Rotating Axisymmetric Bodies in Free-molecular Flow

We proceed to generalize the analysis presented in the previous section for a body rotating about an
axis of symmetry in a free molecular flow by removal of the hyperthermal assumption. General
expressions in the form of surface integrals are obtained for the aerodynamic forces and moments
which reduce to the previously obtained hyperthermal results in the case of an infinite molecular
speed ratio. Again it is found that the body rotation gives rise to additional force and moment
components proportional to the body's angular rate. Although quite intricate, closed form solutions
are obtained for some simple body shapes and errors introduced by the hyperthermal assumption are
investigated by examining the variations in the aerodynamic disturbances over a range of molecular
speed ratios and angles of attack..

5.1 Mass and Momentum Flux

As depicted in Figure 4.1. an axisymmetric body rotates at angular rate wo about its axis of symmetry
relative to the atmosphere We now suppose that a random velocity u described by the Maxwell-
Boltzmann distribution is superimposed on the mean atmospheric flow. Define a spatially-fixed
coordinate system {x,y,z} with corresponding unit vectors i, j, k such that the z axis is along the axis
of symmetry. The incident molecules have a mean velocity V0 relative to the origin 0 where VO is at
an angle P3 with respect to the -z axis and is taken (without loss of generality) to lie in the y-z plane.

The velocity V defined by V = V0 -coxr, is the velocity of the incident molecules relative to the
surface at position r excluding the random thermal motion of the atmosphere. The components of V
along the local {n, b, t}coordinate directions (see Sec. 4.1) are given respectively by

V, = V0 (cos/ 3cos 0 + sin fsin 0 cos q)

V, = Vo (sinfl cos O cos - cos l sin O) (5.1)

V, = V0 sin fPsinqp -wo;

The number of molecules per unit volume with random velocities between u and u+du is given by
eq.(3. 1)

__ r u dud
n33/2 exp )dudu 2 du3

where p is the gas (atmospheric) density, m is the mass of a single gas molecule, and V,, is the most
probable speed of the gas molecules. The random velocity u is with respect to the mean motion of the
gas and hence the velocity v of the incident molecules relative to the surface including the random
thermal motion is given by v=V+u. Resolving velocities along the local {n,b, t}coordinate directions,
it follows that the number of molecules per unit volume with surface relative velocity between v and
v+dv is given by f(v., IV,v,) dv,, dv, dv, where

P ex (- V.V) exp(2V.v-v-v(.f(vvbvt) 32g�=7 'Ve)exP• ) (5.2)

Following the argument given in Sec. 3.1, the net mass flux 8Q (mass delivered per unit time per unit
surface area) from all incident molecules is given by
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SQ=m vf fJfVf(vVbIv,)dv. dv dv,
0

which can be expressed in the form

6: = P exp( - JJ•exp(.' '. dv, exp (2V ; .-vdvb1 v, exp 2 Vj -v2 dv.

Performing the integration, we obtain

6= p1o r,(s•)/s (5.3)

where S-110 Vo/V (molecular speed ratio; S = c in the hyperthermal limit), r, (x) is given by eq.(3.6),
and Tl is defined in eq.(4.7). The incident momentum flux pi due to all impinging molecules is given
by the expression

Pi =M f f f (vn + vbb + vt)v, f(vl, vb, v, )dvfldvb dv,

Utilizing eq.(5.2) and denoting the components of p, along the{n,b,t} coordinate directions by

Pni Pbi, Pj respectively, we findP V.V epv
p ( V ( 2 VVbb-v , )dvb exp 2Vv,- v,2 dvj v2 exp( 2V,,v - vndv,

p (2 2Vv, 2 V Vv,- v,2
Pb =2-

3 ,2,v3  7 !2-2v"

_V _ V)f V exp( 2 V -vb V2dv v, exp 2V-v1 - v2 dv, fvnexpI '2 Idvnv,: •xp V ,_ ;_ V.2  ) J " ~ V2  )Jv

Performing the integrations and simplifying, we obtain the following expressions for the components
of the incident momentum flux.

V2= p10 r 2(Sn)/S 2

Pb, = pVo Vb IF1 (SI)/S (5.4)

p,, = pVo V, r11 (S)/S

where 12(x) is given by eq.(3.8).

We also require an expression for p,. - the normal component of momentum flux which would be
carried away from the surface by diffusely reflected molecules if they were in thermal equilibrium
with the surface. We can write p,, = Vw, V where V1, given by eq.(2.2), is average normal velocity
for this class of molecules. Invoking eq.(5.3), we obtain

P. = pVo V. T (Sr7)/S (5.5)
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5.2 Aerodynamic Forces & Moments

The force per unit area, P, exerted by the molecules upon the surface is given by eq.(4.10) in
conjunction with eqs.(5.4) & (5.5) above.

P,= (2- a, )pVo2 F2 (s)/S 2 +S7p 0 Vo7 F, (Sf)/S

Pb= =, PVo Vb rl (S'I)/S (5.6)
P, aT, pV0 V, 1,(s77)/S

The expressions for the net aerodynamic force and torque along the spatial axes in the present
situation is given by eqs.(4.11) & (4.12) with H(77) replaced by unity and are in a form suitable for
numerical evaluation. We now proceed to expand these force and moment expressions so as to reveal
in an explicit manner the effects of body rotation upon these aerodynamic disturbances. Considerable
simplification in evaluation of the integrals can be realized by making the following observations.

1) j5 and 0 are independent of Tp
2) PI,, andIP. are even functions of (p

3) P, is the sum of an odd and even function of (p

The region of integration is described by: {-Hr < (9 < 7r; z, < z < z2} and the element of surface area is
given by eq.(4.5). In light of the above observations, we can express the force components in the form

Z2 7t

F -2cr,pV0 o/S f f p2 csc 0cosq (, (S,7)d09dz
zI 0

2 7r

F, 2pV0 2 (cr, sin P sin 2 0p + crt• CosOcos09 + a, u "' sinOcos09)Fx(S1?)/S +f, f V0 (5.7)
Zj 0

(2 - ,, sin 0 cost09 2 (Stj)/S 2 ]5 csc 0 d0pdz

2pVo2 f sin 0-, coso0 F, (S)/s -(2- ,,)cos (sn)/s 2 csc z

-,0

where =sin/3 cos 0 cos q( - cos3 sin 0

The components of the aerodynamic moment about the origin of the spatial axes are given by
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M, = 2pVo4 f f {[a, V,,,/Vo0 (;cosO-zsin O)cos(o- a, (zcosO +T sin O)ýcos(o
z, 0

- 'z sin/3sin 2 q(]Ir,(S?7)/s +
(2- u,,)(;cosO - zsin O)cosq,1 2(S,7)/S 2j}cscOd(odzZ, 7r (5.8)

my = -2_o,pVow/S f 0 zp cscOcos~pr,(Si7)dpdz
zj0

M- = -2cpVow/S f. f;53cscO 01 (S,1)ddz
C, 0

As in the hyperthermal case, the body's rotation has no affect on FY,F and M., but introduces

additional disturbances F,,My and Mz proportional to the rotational rate. Additionally, we can again

show that the lift force acts in the direction of tox V0 ; which according to Fig. 4.1, requires F1 <0
foro > 0. Hence we must prove that (see eq.(5.7))

f T2 csc Of cos r F, (S?7)d9 dz Ž0

zI 0

Since 0,f8e(0,ir). sinO>O and sin,/>0. It is therefore sufficient to demonstrate that the inner
integral is nonnegative, From eq.(4.7) we can write 77=acosop+b; where a=sinjisin>Ž0, and
b = cos/Pcos0. It is easy to show that

n ,,r/ 2

f cosq Ir (Si7)dq, = f [F1 (Sb +Satcostp) - f(Sb -Scacosq,)]cosp~d~p

0 0

Now the function F1(x) is an increasing function of x and Sb+SacosT>Sb-Sacos(P for

0 < q(< •r/2. It follows that f cos (Fr (Si?) dp Ž•0 (QED)
0

Recalling the two limits given by eqs.(3.14) & (3.15)r, (S?7)(s27) = 2
lirm = )i H(77), lira s 2  7 H(77)
S-->- , S s-4--

where H(x)is the Heaviside step function, it is easy to show that the expressions (5.7) & (5.8) reduce
respectively to the hyperthermal results obtained previously in eqs.(4.14) & (4.15).
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5.3 Closed Form Solutions

Although the calculations are rather intricate, we will find closed form expressions for the
aerodynamic forces and moments on a circular disk, sphere, right circular cylinder and right circular
cone where each body rotates about its axis of symmetry. Since results for the non-rotating case have
been provided in Sec. 3.2, we shall only consider disturbances arising from body rotation. It will be
demonstrated that the resulting expressions reduce to those obtained in Sec.4.3 (hyperthermal
assumption) as the molecular speed ratio tends to infinity.

5.3.1 Spinning Disk in Free-molecular Flow

We consider the disk x 2 + y 2 < R 2 lying in the plane z=O. Note that unlike the hyperthermal case,
even if we restrict the angle of attack to 0 </3 < ir/2 the disk experiences impingement on both the

top and bottom surfaces due to the random thermal motion of the molecules. On the top surface
0 = 0,77 = cos/3 while on the bottom surface 0 = -r, = ,cos/3. Due to the degenerate nature of this
surface, we need to modify the form of the integrals given in eqs.(5.7) & (5.8) by replacing the

element of surface area (jicsc0&ddz)by jd;5ddp and integrating over the region

{0 < Ti < R;0 < T < 7r}. We find that both F1(co) and My(aO) vanish while the disk rotation produces a

torque opposing the direction of spin given by

M(o(w) = -c - tVoR [0[rF(Scos/3) + F1 (-Scos/3)]/S (5.9)

2

Now limM.=-7r/2upVoR40o cos p in agreement with the hyperthermal result obtained in Sec.
S-4--

4.3.1. At the other extreme, when S=0 (V§ finite, V0 = 0) we have M_ =-.7r /2 a, PV, R40o.

Figure 5.1 shows the variation of M_ (scaled by - 7rapVoR4Co/2) with angle of attack for the two

cases S = 2and S = co. It is observed that the hyperthermal approximation breaks down at high angles
of attack; at /3 = 90' it yields zero torque while a nonzero value obtains under a finite molecular
speed ratio.

In Figure 5.2, we have plotted the percentage error in M corresponding to the hyperthermal

approximation as a function of S for several values of angle of attack. Again, the error increases with
angle of attack and is 100% at /3 = 900.
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Figure 5.1. Spin Moment on Disk in Free-molecular Flow
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Figure 5.2. Disk Hyperthermal Spin Moment Error
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5.3.2 Spinning Sphere in Free-molecular Flow

Consider a rotating sphere of radius R in a free molecular flow as shown in Fig.4.2. Following the
procedure in Sec. 4.3.2, we rotate to a Cartesian frame {X, Y, Z} so that the mean flow velocity V0 is
parallel to the (-Z) axis and introduce a system of spherical coordinates {R,O,4} defined by
eqs.(4.16). The flow is symmetric with respect to the { Y, Z} plane, hence the integrands in eqs.(5.7) &
(5.8) are even functions of (D. In the integrands, we set 17 = cosE, P cscOdq0dz ---> R 2 sinOdOd(D
and make use of eqs.(4.17) while first performing the integration over 4) (recall that due to the
random thermal motion, we must integrate over the entire surface of the sphere).

The lift force F., (co) reduces to the definite integral

F= -271ra,pVoR 3wo S- sin /3 f sinE cosO -' (ScosE))dO

Making the substitution x = ScosO and invoking eq.(3.16) we obtain

F. = -2 7r/3 crPVoR 3
0) sin (5.10)

Interestingly, the lift force is independent of S and of course agrees with the hyperthermal result
obtained in Sec. 4.3.2.

The expression for the moment Mya(c) can be reduced to

M =-7r0,pVoR JWS- sin 2/3 frsinO(cos2 E - 1/2sin 2 1)7 (Scose)dA

Performing the same substitution as above, we obtain the final expression

M, =-7r/8 apVo R 4C A (S) sin 2P3 (5.11)
where

2S 2 -3 2 4S 4 -4S 2 +3 erf(S)
S4S4

Since lim A(S) = 0 and lim 59(S) = 1, this component of the aerodynamic moment vanishes when
S-40 S--

the mean flow velocity is zero (with random thermal motion) and agrees with the result obtained
previously under hyperthermal conditions.

Finally, the moment M_(co) can be reduced to the form

M= 7r/4a, pVOR4R S io [5- cos2/3 -(1 + 3cos213)cos2E]sinO F1(ScosO)d9

Performing the integration, we find

M_ =-ir/8, pVoR 4Co [D(S) - A(S)cos2/3] (5.12)

where

ss OS2-+1 s2 20S4 + 12S 2 -1(S) -1 1 exp(_ 0S4 + - er(S)2,47--•S 4S
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Since limn{Y(S),B(S)}={1,5}, we recover the hyperthermal limit as obtained in Sec. 4.3.2. To

obtain the limiting value of M- as S ( V0) approaches zero, we replace V0 with SV,, and note that
lim{,1l(S),SB(S)} = {0,32/(3Vt-0)}. Hence, under a zero mean flow the sphere experiences a nonzero

moment when spinning in a Maxwellian atmosphere.

lim M- = -41Hi/3 a, pV, R4
Co

The functions q(S) and D(S) are plotted below in Fig. 5.3. Since 0 < 5q(S)< 1 for 0 < S < -, the
magnitude of My is overestimated by the hyperthermal approximation. Figure 5.4 shows the variation
of jMzj (scaled by 7/8crpVoR 4w) with angle of attack for the two cases S=5 and S=oo. In contrast to
the rotating disk (Fig. 5.1), the torque magnitude increases with 13 and the difference between the two
cases are approximately uniform over the full range of angle of attack.. The plots contained in Figure
5.5 show the percentage error in M- based on the hyperthermal approximation as a function of S for
selected values of the angle of attack (13). As opposed to the problem of the rotating disk (see Fig.
5.2), the error is not greatly influenced by the angle of attack and now decreases with increasing 13.

A(S) B(S)

1 5.75

0.75 5.5
0.5

0.25 5.25

SS
1 2 3 4 5 4 6 8 10 12

Figure 5.3. The Functions Ai(S) & D(S)
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Figure 5.5. Sphere Hyperthermal Spin Moment Error
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5.3.3 Spinning Cylinder in Free-molecular Flow
With reference to Fig. 4.1, a right circular cylinder of radius R and length L has its centroid at the
origin of the Cartesian coordinate system {x, y, z}. The cylinder is rotating about its axis (z) at angular

rate to with an impinging free-molecular flow incident at angle of attack 1P with respect to the -z axis.
Due to the random thermal motion of the molecules. impingement occurs on both the top and bottom
faces of the cylinder in addition to its lateral surface. We will use the superscripts 'I', 't' & b' to
distinguish forces/moments on the lateral, top and bottom surfaces respectively.

On the lateral surface we have ,5 = R, 0 = 7r/2 and 77 = sin /3 cos (p (see eq.(4.7)). Computing the lift
force from eq.(5.7) and performing the z integration, we obtain

FI(o))=-2u,pV0R2 LCOS' fcosTq F' (p cos0)dqp (pu - Ssin13)

The integral appearing in the above expression has been previously evaluated (see eq.(3.23)) and
leads to the result

FI 7r
a)()= -- w ,pVoR2 L sinfi

2
As in the previous example of the sphere, the lift force is independent of S and agrees with the
hyperthermal expression obtained in Sec. 4.3.3.

Calculating the moments on the lateral surface from eqs.(5.8) we find that M$.(w) vanishes while

M' (a) can be expressed in the form

M!(wo) = -2upVrR 3 Lo S-' fo , (M cos ()dqp

Appealing to eq.(3.20) for evaluation of the integral, we obtain

Mz(w) = 4_7r-• ,pV0oR3 Lw S- e-h/2 + 1) 10(/u2/2) +RP2-1, (p2/2)]

where I,( ) denotes the modified Bessel function of the first kind of order V. Exploiting the second

limit following eq.(3.24), we recover the hyperthermal result obtained in Sec.4.3.3. At the other
extreme. we easily can demonstrate that

lim Ml(w) = -V ,pV(,R3'Lwo

On the top and bottom surfaces of the cylinder we have 0=O,r7=cos/3 and 0=7r,7r=-cosf3
respectively. Adopting the results obtained in Sec.5.3.1 for circular disk, we find:

On the top surface F.. = Mr = 0

S(co) = -7r/2cpVoR 's'(Scos )

On the bottom surface F' M = 0
M (co) = -r/2 cra ,VR 4 w S'T1 (-Scos 13)

Adding the contributions from all three surfaces, we obtain the net aerodynamic force and torque
(about the centroid of the cylinder) due to rotation.
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1F (w) = -ir/2 "pVow R2Lsinf3

My(co) = o (5.13)

Mz (o)) -ar,p^R 3 0)S-1 {.2 R[17, (Scos/3) + r, (-Scos 13)] +

.ViLe-•u'/2[(2 + 1)O1(Y2/2) + k121, (Y2/2)] }

For the purposes of numerical evaluation we take the cylinder dimensions to be R=I and L=5.

Figure 5.6 shows the variation of [M.1 (scaled by apV0o) with angle of attack for the two cases S=3

and S = -. It is seen that the error in the hyperthermal assumption is most pronounced at small angles
of attack. The Plots Contained in Figure 5.7 show the percentage error in M. based on the
hyperthermal approximation as a function of S for a range of angles of attack between 0 and 90
degrees. Again, it is observed that the errors are largest at small angles of attack and are non-
negligible even at S=8 for small 3.

-Mz Moment on Rotating Cylinder
Free-Molecular Flow
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6

.4. S=3

/3 (deg.)
30 60 90

Figure 5.6. Spin Moment on Cylinder in Free-molecular Flow
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Figure 5.7. Cylinder Hyperthermal Spin Moment Error
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5.3.4 Spinning Cone in Free-molecular Flow
We consider a right circular cone as shown in Fig. 4.5 in which a free molecular flow with mean
velocity V0 is incident at angle 03 to its axis. The cone has base radius R and height L and is rotating at

the angular rate wo about its axis. Due to the random thermal motion of the molecules, impingement

occurs on the bottom surface of the cone in addition to its lateral surface for any value of f3.

On the lateral surface: 0 = 7r/2-y, ,5 = R(1-z/L), and q = cos/3siny + sinpfcosy cosT
where y is the half-angle of the cone (tan y = RIL)

Computing the spin induced lift force and moments from eqs.(5.7)-(5.8) and performing the z
integration, we obtain

2 17
F,(c) = -- 3crpV0R cocscy S fo cos°Fl(Sri)dp

M1 -Rcot y F1 ((0o)

MI (w) = -'2IUpV0 R 4cO csc Y f F1 (S71)dcP

On the bottom surface of the cone, the force and moment calculation follows that performed in Sec.
5.3.1 with 0 = 7and 77 = -cos P. Adding this contribution to the above yields the net aerodynamic
force and moment (about the center of the base) due to rotation.

x(co)=--apVoR 3 CocscY 7f cos p ['l (St/)dT

M.(c0)=- cot y F,(wo) (5.14)
4

M.(CO) = Ul4ly {r,~ (-Scosp/) +cscy fr 1 (Sri)dTo

Utilizing the limit in eq.(3.14), we can show that these expressions simplify to the hyperthermal
results obtained previously in Sec.4.3.4. In general, the integrals appearing in the above formulas
must be evaluated numerically. We can however obtain closed form expressions for the special cases
of longitudinal (13=0) and transverse (/3 = 7r/2) flow.

When 03=0, we readily find that F,(Co) = M,(w) = 0 and

M,(w) =-2
1 tpVoR4aOS- [r,(-S) + csc l 1 (Ssiny)]

When /3 = r/2, we can show that

1. (co) = - n16 a, pV0 R3 c Cot Y
M, (a)) = - in24 cr, pV0 R 4 t) Cot 2y

Mg(o) = -4-4r,p V0Ro s- {1 + csc y exp(- K'/2)[(1 + K )],(K2/2) + "1 (K2/2)]}

where K = Scosy and 1, ( ) denotes the modified Bessel function of the first kind of order V. We

note that for 13=0 and 7r/2 both F, and M, are independent of S while M, is a decreasing function of

S.
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The plots in Figure 5.8 show the relative error in F.(wo) for the hyperthernal approximation for 03=5,
50, & 70 degrees. It is observed that the error decreases with increasing angle of attack for a given
molecular speed ratio. This is consistent with the fact established above that F, is independent of S

when 13=90 degrees. Since the relation M, = Rcoty F, /4 holds both for finite S and in the

hyperthermal limit, plots of the relative error in M,. are identical to those in Figure 5.8.

The relative error in the hyperthermal approximation toM(w) is shown in Figure 5.9 for P3=0, 45, &

90 degrees. In contrast with M),(F,),the relative error now increases with increasing angle of attack

for a given molecular speed ratio.
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Figure 5.8. Cone Hyperthermal Spin Force Error
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Figure 5.9. Cone Hyperthermal Spin Moment Error
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Appendix: Elements of the Kinetic Theory of Gases

The purpose of this appendix is to present a concise account of those aspects of gas kinetic theory
that are utilized in the report to calculate the aerodynamic disturbances on a body immersed in a
free-molecular flow. We restrict our attention to ideal gases and develop the simple equation of
state and the Maxwell-Boltzmannn velocity distribution from considerations of molecular
collisions. Further details can be found in [3] & [4].

The Ideal Gas

It proves convenient to define an ideal gas by imposing the following assumptions which have
been shown to be extremely reasonable in many areas of application.

1) The gas is composed of identical molecules which are separated by distances which are large
compared with the molecular diameter. Any finite volume of gas contains an extremely large
number of molecules. The first assumption will be valid for gases under low pressure. To
appreciate the significance of the second assumption, we recall the experimental result that a
I Kgm-mole of gas contains approximately 6.02214 x 1026 molecules (Avogadro's number).
Since at standard conditions. 1 Kgm-mole of gas occupies a volume of 22.4 m3 , we see that
there are approximately 3 x 1016 molecules in a cubic millimeter at standard conditions.

2) In the absence of external forces, the molecules are distributed uniformly throughout their
container. Thus if their are a total of N molecules in a container of volume V, then the average
number of molecules per unit volume, n, is n = N/V. It follows that a small volume element
AV contains nAV molecules. Clearly, it is possible that by taking AV sufficiently small no
molecules will be contained in the volume element. However, since the number density of
molecules is so large, we can divide the container into extremely small elements of volume
which still contain a large number of molecules. Even a cube 1/1000 mm on a side will
contain approximately 3x10 7 molecules (at standard conditions). This dimension is
infinitesimal compared with other physical dimensions of interest. We therefore are justified
in applying the methods of differential and integral calculus to these "small" volume elements
with negligible error. Thus the number of molecules in a differential volume element dV is
given ndV.

3) Forces are exerted upon a molecule only when it collides with another molecule or the walls
of its container; these collisions are regarded as perfectly elastic. The walls of the container
are assumed to be smooth hence there will be no change in the tangential component of
molecular velocity upon collision.

4) There is no preferred direction regarding the molecular velocity. Imagine a vector attached to
each molecule with magnitude and direction scaled to its velocity. Transfer these vectors to a
common origin and construct a sphere of arbitrary radius r centered at the origin. Our
assumption implies that these vectors (prolonged if necessary) will intersect the sphere at a
set of points uniformly distributed over its surface. The number of these points will be N, the
number of molecules, and their surface density is given by N/(47rr2). Introducing spherical

coordinates {r,Ojp} at the center of the sphere where 0 is the polar angle, we find that the

number of molecules per unit volume with velocities having directions between (0,0+dO)
and ((p,,T+ dq0) is given by
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cn0e = n sin0cdOdq (A.1)47r

5) Clearly, the speed of any given molecule changes continually due to collisions with other
molecules or the walls of the container. To simplify the mathematics, we assume that the
molecular speed can assume any value in the range (0,oo) and that the number of molecules
with speeds in a specified range is constant for a gas in thermal equilibrium. Rigorously
speaking, there will be a finite upper bound on the molecular speed. Later we will derive a
statistical distribution of molecular speeds (based on these assumption) and show that this
distribution function tails off very rapidly predicting a very small fraction of molecules with
speeds in a high range. This provides justification for removing the finite upper bound on the
molecular speed.

Molecular Surface Collisions

It is important to consider the number of molecular collisions per unit time per unit area of
material surface. Figure Al shows an element of surface area dA with normal n along with the
polar and azimuth angles O,q. Molecules impinge upon the surface from all directions with all
speeds. Let us consider only those molecules traveling with specific speed v and specific direction
0,(p which we term a "Opv -molecule". More precisely, these molecules have speeds between v
and v+Av, and directions in the range (0,O+dO) and ((p,qp+dqp). In a time interval dt, the
molecules which impinge on the surface are contained in a cylinder of slant height vdt and base
area dA with corresponding volume vcosOdtdA. If we denote by An, the number of molecules
per unit volume with speeds between v and v+dv, then dn,/n represents the fraction of molecules
in this speed range. We make the further assumption that this fraction also applies to any
subgroup of molecules e.g. those traveling in any particular direction. Utilizing eq.(A.1), we find
that the number of 00, -molecules per unit volume is given by

I sin 0 dO dp dnc,
47r

Thus the number of 0(pv -molecules in the cylinder i.e. the number of collisions in time dt is

1v sin 0 cos 0 dO dp dnA, dA dt (A.2)

47r

and the number impinging per unit time per unit area is given by

I vsin0cosO dO d(pdn,
47r

By integrating the above expression over {10: 0• 7r/2; 0•< (p < 27r}, we obtain the number of
molecules with speed v colliding with the surface from all directions per unit time per unit area

1
- v dnv
4

In accordance with assumption (5) above, the total number of molecules impinging upon the
surface per unit time per unit area is given by
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n

lJvdn,. (A.3)

0

We next relate the above integral to the average molecular speed. First consider the discrete case
of N molecules for which N, have the same speed Vl, N2 have the same speed v2, etc. The average

speed T is then given by
j7 = NIv, + N2v 2 +...

N

Dividing numerator and denominator by the volume V of the container, we can write

I VI +l iltv +...

where ni is the number of molecules per unit volume with speed vi. Transitioning to the case of a
continuous velocity distribution, we have

iT =livd,.
0

Utilizing this result in eq.(A.3) we arrive at the desired expression for the total number of
molecules impinging upon the surface per unit time per unit area

4 In (A.4)
4

We now proceed to calculate the force imparted by the impinging molecules upon the surface.
With reference to Fig. A], consider a single O&pv molecule of mass mn before and after a surface
collision. Regarding the material surface to be of infinite mass relative to the molecules, and
recalling assumption (3) above, we find the change in momentum per molecular collision to be
2mvcosOn. Multiplying by (A.2). we obtain the change in momentum dp for all 0'p, molecules
colliding with the surface in the time interval At.

dp= I-mv2 sin 0 cos2-0 dOdqpdndAdtn
27r
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Integrating this result over the region {0:5 0•< r7/2, 0• <p < 27r, 0•< v < oo} and dividing by dt
gives the average force exerted by the surface on all the incident molecules. By Newton's third
law, the force exerted by the molecules on the surface are oppositely directed with an associated
pressure p given by the expression

p =m v2dnv
0

Following the same argument as given above for the average speed, we can express this integral
in terms of v2 - the average value of the square of the speed.

.1 -2 1 -2(A 
)p=-nmv =lpv (A.5)

3 3
where p denotes the gas density.

The above relation can be used to arrive at a molecular interpretation of absolute temperature.
The equation of state of an ideal gas can be expressed in the form

pV = 4RT

where in is the number of moles, 9? is the Universal Gas Constant (8314.5 joules / Kg - mole *K),

and T is the absolute temperature. But the number of moles is equal to the total number of
molecules, N, divided by the number of molecules per mole, N0-Avogadro's number
(6.02214 x 1026 molecules/ Kg -mole). The universal constant R/No -k is Boltzmann's

constant (1.38065 X 10-23 joules/molecule 'K), in terms of which the ideal gas law assumes the

form

pV = NkT (A.6)

Since n is the number of molecules per unit volume, N/V, eq.(A.5) can be expressed in the form

1 -i
pV =- NmV

3

If this is to agree with eq.(A.6), we must conclude that

lmv2i kT (A.7)
2 2

which says that the mean translational kinetic energy of a gas molecule is proportional to the
absolute temperature.
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Distribution of Molecular Velocities

In this section we derive the celebrated Maxwell-Boltzmann velocity and speed distributions for
an ideal gas. A rigorous derivation requires methods from statistical mechanics which will not be
attempted here. We present essentially the argument originally given by Maxwell which although
heuristic, is plausible from a physical point of view. In the previous section we arrived at
expressions for the molecular flux and pressure in terms of the mean and rms molecular speeds
respectively. By imposing additional assumptions, we can calculate the actual velocity
distribution which will ultimately lead to relations between these average velocities and the gas
temperature.

Consider a rectangular coordinate system whose axes {v.,v3.,v,) correspond to the three
components of molecular velocity. Each molecule in physical space has a corresponding point in
this "velocity space". Since the number of molecules if finite, the distribution of these points in
the velocity space will not be continuous. However, in view of assumptions (1) & (2) above, we
will approximate this distribution by a continuous function with the understanding that any
designated "volume element" in the velocity space must be chosen large enough so that it
contains a large number of representative points. We start by posing the question: how many
molecules (out of the total number N) have x components of velocity between v, and v1i+dv, ? This
is equivalent to finding the number of points in velocity space contained in the thin slice parallel
to the v,,-l' plane between v., and 1, +dv,.. If we denote this number by dNý,.. then the fraction of the
total number of molecules with x components of velocity between v,. and v.,+dv., (regardless of
there y or z velocity components) is dN,. /N. This fraction is certainly a function of v,. It seems

plausible that it should also be proportional to the thickness of the slice. Hence we write

dN. - f(v,.dv, (A.8)

N

where the function f is to be determined. By assumption (4) the velocity distribution is isotropic,
so we must have for the same functionf

dN,, f (v.)dv

N " " (A.9)
dN,= f(v.)dv_

N

where dN, and dN,.: are defined analogously to dN,, We now impose the additional assumption

that these fractions are also applicable to any subgroup of molecules e.g. for the subgroup of
molecules with x components of velocity between v, and v,•+dv. f(v,)dv, of them will also have a

y component of velocity between v, and v., + dv.. Thus the number of molecules simultaneously
having x components of velocity between v, and v. + dv.,, y components between vY, and v. + dvY

and z components between v, and v. + dv. is given by

dN : = Nf(v)f(v+,)f(v,)dv,.dvdv-

Geometrically, this gives the number of representative points in the volume element dvdvydv at

the location ( ) in velocity space. The number of representative points per unit volume

then defines a "density" p
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p-- N< yf(vx)(,): (,) (A.,o0)

The change in p for small increments in vx, v., and v. is given by

dp= LP dv, +- dv +- dv
av, " v, av

Since the velocity distribution is isotropic, there will be no change in p if we restrict ourselves to

those points that are at a fixed distance from the origin in velocity space i.e. dp = 0 under theI 2 +"V

constraint v. + v Z + v2 = const. Using eq.(A.10), this results can be expressed in the form

f(v) f(V)v+'(v)
dv + d, + dv =0 (A.11)s(V, x) X t,. " .:O, Y f(Z

for velocity increments satisfying

v. dv, + v, dv, + vz dvz = 0 (A. 12)

In eq.(A.1l) only two of the differentials are independent. Utilizing eq.(A.12) we can recast
eq.(A.11) in the form

F 1 x F'f'(vv )
f'(,,) f'(vk) , v,. fd'v + f'(vi) v"_ dv,, = 0

from which it follows that

,(V.,.) s '(V,,) S(vz)
•.:v.,.) 1A-•:(vA1

The first ratio is a function only of v., while the second and third are respectively functions only

of v, and v. It follows that each is equal to a constant

f (v") -- / etc.

Integrating this equation and observing that f(v•.) -- 0 as Ivj -• c, we obtain

f(v ) a exp(-fi2v ) (A.13)
0' --A/2)
Thus we have obtained the desired form of the velocity distribution function f. In the next section

we will obtain the physical interpretation of the parameters a and /. We can now express the

number of molecules with x components of velocity between v,. and v.,+dvr in the form (see
eq.(A.8))

dU,, = Naexp(-Pf3v.)dvx (-- < v. <)

(with similar expressions for dN,, and dN,) and the number of points per unit volume (A. 10) as
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p= Na3 exp(-I32v2) (A.14)

where v is the molecular speed.

Many times we are interested in the number of molecules with speeds in a certain range without
regard to direction. The speed range of interest may be of finite or infinite length. Let us first find
the number of molecules with speeds in the infinitesimal range between v and v+dv. Denoting
this number by dN,. we simply need to find the number of representative points inside the thin
spherical shell of radius v and thickness dv in velocity space. Since p is uniform in this region,
we simply multiply the density given in eq.(A. 14) by the volume 41rv2dv of the shell

dN,. = 47rNa 3vY exp(-/32v 2)dv (A.15)

Note that the velocity distribution (A.14) assumes its maximum value at v=0 and decays
exponentially to zero, while the speed distribution (A. 15) is zero at v=0. increases to its maximum
value and then decays exponentially to zero. The number of molecules with velocities in a desired
range or having speeds in a specified interval can be calculated by integrating the appropriate
distribution over the appropriate domain. Thus the number of molecules with speeds between v,
and v, (0 < v1 < "2) is obtained by integrating (A. 15) over the interval v, < v < v 2 .

Evaluation of the Distribution Parameters

We now show how the two velocity distribution parameters a and /3 can be related to the absolute

temperature of the gas. Firstly. the integral of (A.15) over all speeds from zero to infinity must
yield N-the total number of molecules. Performing the integration, we find that

a = P47

The speed distribution (A. 15) can then be expressed in terms of the single parameter /3

dN,, = 4N 3 v2 exp(-/32v 2)dv

We now relate the parameter /3 to the most probable, mean, and rms speeds. We define the most

probable speed v,, to the value of v for which dN,./dv assumes its maximum value. It is easy to
show that

v =3'. (A. 16)

The mean speed v is given by

1= vdN,. 2 (A.17)

The rms speed is defined by

2 _3
fills = v2 dN1, = -2

Combining this last relation with eq.(A.7), we deduce that

/3 = n/2krT (A. 18)

allowing us to express all the distribution functions in terms of absolute temperature and
molecular mass.
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dN,4( 3/2 v (x ~ 2 )d
2kT) 2kT)

N ( 3/2 (" my2
dNv ,, 12 =-- .- J exp _ dv. dvdv (A.19)

N V1m ,.r122 (- 2 >) " -

div1. = ex ( / - mvý Idv
T1Jr 2kT) "p 2kT)

with corresponding expressions for dN,, and dN,i.. Figure A2 shows the velocity distribution

dNv/dv for three different temperatures Tl < <. The area under the curves are all equal since
this represents the number of gas molecules.

dN,
dv

T,

T2

V

Figure A2 Speed Distribution Function
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